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A b s t r a c t - - T h i s  paper presents a truly meshfree method referred to as radial point interpolation 
collocation method (RPICM) for solving partial differential equations. This method is different from 
the existing point interpolation method (PIM) that  is based on the Galerkin weak-form. Because 
it is based on the collocation scheme no background cells are required for numerical integration. 
Radial basis functions are used in the work to create shape functions. A series of test examples were 
numerically analysed using the present method, including 1-D and 2-D partial differential equations, 
in order to test the accuracy and efficiency of the proposed schemes. Several aspects have been 
numerically investigated, including the choice of shape parameter c which can greatly affect the 
accuracy of the approximation; the enforcement of additional polynomial terms; and the application of 
the Hermite-type interpolation which makes use of the normal gradient on Neumann boundary for the 
solution of PDEs with Neumann boundary conditions. Particular emphasis was on an efficient scheme, 
namely Hermite-type interpolation for dealing with Neumann boundary conditions. The numerical 
results demonstrate that  good improvement on accuracy can be obtained after using Hermite-type 
interpolation. The h-convergence rates are also studied for RPICM with different forms of basis 
functions and different additional terms. (g) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In recent years, there has been great interest to improve meshfree methods based on radial basis 
functions (RBF) in the field of computational mathematics and mechanics [1-8]. However, the 
primary disadvantage of the traditional RBF approach is that the coefficient matrices obtained 
from this discretization scheme are fully populated. It will cause great inconvenience for large- 
scale practical problems. At present, there are mainly two approaches to improve the traditional 
RBF approach. One is to improve the conditioning of the coefficient matrix and the solution 
accuracy using some special mathematical techniques. The other is to obtain banded coefficient 
matrices using compactly support radial basis functions. It has been shown that these two 
approaches cannot always produce satisfactory results. More effective approaches are therefore 
needed. 

Point interpolation method (PIM) was developed by Liu et  al. [9], and it has further been 
studied [10-15]. As the name implies, PIM obtains its approximation by letting the interpolation 
function pass through the function values at each scattered node within the defined local support 
domain. In PIM, its shape function possesses the Kronocker delta function property so that the 
essential boundary conditions, which have been troubling meshfree researchers for recent years, 
can be easily handled like in the traditional finite-element method (FEM). So far, PIM is based 
on Galerkin or Petrov-Galerkin weak forms, and numerical integrations are required. Like other 
Galerkin-based meshfree methods, the inevitable background cell must be used in integration 
processes. In contrast to Galerkin-based approaches, the collocation method is simple and efficient 
to solve partial differential equations without the need of numerical integrations. Collocation is 
known as an efficient and highly accurate numerical solution procedure for partial differential 
equations. Another attractive feature is that its formulation is very simple. In [16], a local 
multiquadrics (MQ) formulation, which is similar to the MQ-RPICM, has been presented and 
applied to solve PDEs. 

However, the research results in [17] showed that the accuracy obtained by using direct collo- 
cation scheme is a bit poor especially on boundary. In addition, the collocation scheme, which 
has difficulties in dealing with Neumann boundary conditions, is very different from the Galerkin 
scheme that can deal with Neumann boundary conditions naturally. Liszka et  al. [17] proposed a 
Hermite-type interpolation scheme in Generalized Finite Difference Method (GFDM) to improve 
the  accuracy of collocation-based approach for solving solid problems. Zhang et  al. [7] applied 
Hermite-type interpolation in compactly supported radial basis function method successfully. Liu 
et  al. [14] presented an efficient RPICM based on thin plate spline (TPS) for solving 2-D linear 
elastic problem with especially attention for dealing with force boundary condition. 

In this paper, the Hermite-type interpolation is adopted in the point interpolation in order to 
improve the accuracy. Approximate field functions are carried out not only with the nodal values 
but also with the normal gradient at the Neumann boundaries by taking the advantage of the 
point interpolation method based on radial basis functions. 

In this paper, the radial point interpolation collocation method (RPICM) is presented. The 
formulation for constructing shape functions based on radial point interpolation and Hermite 
radial point interpolation is described and formulated in Section 2 and Section 3. The detail 
collocation schemes are discussed in Section 4. In Section 5, the accuracy and simplicity of this 
presented approach is shown numerically by a series of test examples, and h-convergence of this 
method is numerically analysed. We conclude with a summary in Section 6. 

2. R A D I A L  B A S I S  
P O I N T  I N T E R P O L A T I O N  

The approximation of a function u(x), using radial basis functions, may be written as a linear 
combination of n radial basis functions, viz., 
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~(x) ~ ~(x) = ~ a,¢ (]lr - r, ll, c,), (1) 
i = 1  

where n is the number of points in the support domain near x, ai are coefficients to be determined 
and ¢ are the MQ, or inverse-MQ, or Gaussian basis function, or thin plate spline (TPS) function. 

These well-known radial basis functions are as follows. 

MQ. 

¢ ( l l r - r i l l , c ~ )  = ] [ r -  r~ll 2 +c~ . 

GAUSSIAN BASIS FUNCTION. 
e--4(ilr--rill2/r~). 

THIN PLATE SPLINE. 
Ilr - rill 2M log Oily - rill), 

The shape parameter can be defined as ci = (a~r~) [8]. 
Where r is the distance between two nodes. In 2-D problems, we have 

] ) r - r i l l  = J(x-x~)2+(Y-Y~) 2. (2) 

The constant ci is a shape parameter. How to choose the optimal shape parameter is a problem 
that  has received the attention of many researchers [8,16]. So far, there is no mathematical 
theory developed for determining the optimal value• Detailed guidelines on how to choose these 
parameters can be found in Liu's recent monograph [8]. Optimal values for these parameters for 
PIMs based on Galerkin and Petrov-Galerkin weak forms were found via numerical experiments 
and provided in this book• Here, the form of dimensionless shape parameter ac will be employed 
and investigated for RPICM. The constant rc is the characteristic length that  is related to the 
nodal space in the local support domain of the collocation point and it is usually the average 
nodal spacing for all the nodes in this support domain. The coefficients ai in equation (1) can 
be determined by enforcing that  the function interpolations pass through all n nodes within the 

support domain. 
The interpolations of a function at the U h point can have the form of 

~(xk)=al¢(llrk_rll),cl)+a2¢(]lrk-r~ll,e2)÷...+a,d~(llrk-r,dl,cn), k=1,2 . . . .  n. (3) 

The function interpolation can be expressed in a matrix form as follows: 

a =  [al 

~.1 e = c I ) a ,  

[ ¢ ( l l n _ r t U , ~ )  . . .  ¢ ( l l n - r ~ l l , c ~ )  
• o,  

, I ,=  [ ¢ ( l l r ~ - . r l l l , c l )  ".... ¢(llr~-rill,ei). 

L¢ (llr,~ - nl l , c~)  -.. ¢ (llr~ - r, l l ,~)  

~ = [ ~ ( X l )  . . .  a (xk)  . . .  a (xn) ]  T,  
T 

• . .  a i  " "  a n ]  • 

"'.i ¢(]lr~ -'r~H 'c~)] 

i / 

(4) 

(Sa) 

(5b) 

(5°) 

Thus, the unknown coefficients vector is found to be 

a - ~ - a f i ~ .  (6 )  
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• :Collocation Point 
Figure 1. The four quadrants criterion. 

The form of the approximation function can be obtained as follows: 

~(x) = ~oa = ~(~-ll]e ----- @fie, (7) 

~-- [¢( l l r - r l l l ,c l )  ¢(llr-r211,c=) ¢(llr-r,,ll,c,,)]l×,~, (8) 
where the matrix of shape functions can be expressed as follows 

¢ = ~ - I = [ ¢ 1  . . .  ~ . . .  ~n]l×n (9) 
in which ¢i (i = 1 , . . . ,  n) are shape functions for points in the support domain, which satisfy. 

1, j = i ,  

¢~(x j )=  0, j C i .  
(10) 

Thus, the shape functions constructed have the delta function property, which is very attractive 
to impose essential boundary condition in the Galerkin-based weak form meshfree methods. 

Let us now examine whether iI )-1 exists and how to assure its existence. To do it, a good 
performance arrangement of nodes in the support domain near x must be constructed for this 
collocation scheme. Here the four quadrants criterion introduced is a useful way to do it. As 
shown in Figure 1, point x is regarded as the current collocation point and four nearest points 
to x must be found in four quadrants, respectively. Their distances from x are dl, d2, d3, d4, 
respectively, and then the maximum value do = max{dl,d2, d3, d4} is chosen as the radius of 
support domain. The dimension of the support domain is defined by d = c~sd0, where as is 
generally chosen to be 1.5-3.0. In our examples in Section 5, c~8 = 2.0 has been chosen and 
the number of points in the support domain are about 15-20 which leads to a reasonable small 
bandwidth for the system matrix. 

3. HERMITE RADIAL BASIS 
POINT INTERPOLATION 

The approximation of a function u(x) may be written as a linear combination of radial basis 
functions at the n nodes within support domain of x and its normal derivatives at the nb nodes 
on Neumann boundaries 

u (x) ~ (x) f i  ai¢i + f i b  -= 3 On + G (x),  (11a) 
i=l j=l 

¢, = ¢ (I]x -- xil[) ¢~ = ¢ (llx - xblt) ' 0¢30n =IX'0¢~3 --cgx + lj ycgCbcg--y-. ( l lb)  
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Figure 2. Hermite interpolation. 

CONSTANT TERM. 

LINEAR POLYNOMIAL. 

SQUARE POLYNOMIAL. 

a ( x )  = go. (12a) 

G(x) = go + g l x  + g2Y.  (12b) 

G(x) = go + g l x  + g2Y + g a x  2 + g 4 x y  + g s y  2. (12c) 

ai are coefficients which correspond to radial basis ¢i of function, bj are coefficients which cor- 
respond to normal derivative of radial basis Cj of function at the points on Neumann boundaries, 
and go, gl, g2, . . .  are the coefficients of the additional unknown polynomial. ¢ is the radial basis. 
l~,/~are the elements of normal vector at the jth point on Neumann boundaries. 

The coefficients ai and bj in equation (1) can be determined by enforcing that the function 
interpolations pass through all n nodes within the support domain and the normal derivatives' 
interpolations of function pass through nbnodes on Neumann boundaries. Figure 2 is shown to 
demonstrate the idea of Hermite interpolation. 

The interpolations of the function at the k th point have the form: 

nb 

+ G(Xk), k = 1 , 2 . . . n ,  
i= l  j = l  

(laa) 

(13b) 

The interpolations of the normal derivatives of function at the mth point on the Neumann bound- 
aries have the form: 

o,1 oll - 2 - - , ~  o~ +z--, ' o n  ~ oi1 / o ~ '  m ----1, 2, . . . nb.  (14) 
i= l  j = l  \ / 
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In addition, the additional polynomial terms have to satisfy an extra requirement that guar- 
antees unique approximation of the function, and the following constraints are usually imposed: 

f~ 

ak = 0, (15a) 
k = l  

a k x k  = O, ~_. a k y k  = 0, (15b) 
k = l  k--1 

a ~  = 0, ~ a ~ y ~  = 0, a~y~ = 0. (t5c) 
k = l  k = l  k = l  

For constant additional term, only one constraint equation (15a) is enforced (l = 1). For linear 
additional term, three constraint equations (15a),(15b) are enforced (l = 3). For quadratic 
additional terms, six constraint equations (15a)-(15c) are enforced (1 = 6). 

The interpolations of function and normal derivatives on the Neumann boundaries can be 
expressed by matrix formulations as follows: 

u(~+'~b) = ~(n+nb+l)x(,~+nb+z)a(n+nb+~)xl, (16) 
Olxl 

where fi~ is the vector that collects all variables of the nodal function values at the n nodes in 
the support domain and all variables of normal derivatives of the nodal function at the nb nodes 
on the Neumann boundaries in the support domain. 

"l~le = [ /Zl  " ' "  Uk " ' "  Un ~ n  b " ' '  °q'5~ " ' "  O'5~b ] T . (17a) 
On On 1 x (n+nb)  

The coefficients vector a is defined as 

T 
a = [ a l  . . .  a l  . "  an  bl . . "  bj  . . .  bnb go ""] lx(n+nb+0'  (17b) 

The elements of • are formed by Cki, Ckj's normal derivatives and G(x), and they can be obtained 
by equations (13a),(13b),(14), and (15a)-(15c). 

Thus, the unknown coefficients vector 

a =  ~ - 1  u(n+nb) . (18) 
0 / x l  

Finally, the approximation form of function can be obtained as follows: 

(%: } fi(x) = ~ba = ~b@ -1 +,~b) = ¢fi~. (19a) 
!, ~x t  

The matrix of radial basis, its normal derivatives and the additional terms is defined by 

~ b = [ ¢ t  " "  ¢i ""  Cn 0¢b 0 ¢ b  0¢% . (19b) 
On On On 1 x Y ' " ] i x ( n + n b + O  

The matrix of shape functions can be expressed as follows 

¢(~+~)=[¢1- . .  ~ - . .  ¢~ ¢~ . ~ - - ~ n ~ ] .  (19c) 

Here ¢i (i = 1, 2 , . . . ,  n), cH (j = 1, 2 , . . . ,  rib) are shape functions, and they are obtained by the 
first n + n b  elements in the vector [ ¢ 9 -  t] 1 x (~+nb +0" 
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1-D 3-node Collocation Scheme 

0 0 • 0 0 

1-D 5-node Collocation Scheme 

0 O 0 • 0 0 0 

1-D 7-node Collocation Scheme 

• : Collocation point 

Figure 3. 1-D collocation scheme. 
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(a) Nonuniform distribution. 

Figure 4. 2-D collocation scheme. 

Finally, the function u(x) can be expressed as follows: 
n n b  ^ e  

k=l j=l 

4. COLLOCATION SCHEMES 

Consider the partial differential equation given by 

Oeu ~ 02u _02u Ou EOU__ 
n(u) = d-o-'~x2 ÷ l:; o--~y ÷ C~.~2 + D-~x _ _  Oy + F u =  H, 

together with the general boundary. 

NEUMANN BOUNDARY CONDITION. 

Lbl (u) = n T • Vu + & = 0, on Fbl. 

DIRICHLET BOUNDARY CONDITION. 

U - -  U ~ 0,  o n  r b 2 .  

(b) Nine-node uniform distribution. 

(20) 

in f~, (21a) 

(21b) 

(21c) 
The coefficients A, B, C, D, E, F,  and H may all depend upon x and y. 
Assume that  there are Nd internal (domain) points and Nb = Nbl + Nb2 boundary points, 

where Nbl are Neumann boundary points and Nb2 are Dirichlet boundary points. 
In general, the location of the collocation points can be different from the location of nodes 

in the discretization model. However, for the sake of simplicity, collocation points are the same 
as the nodes of the model. Figure 3 shows the 1-D collocation schemes, and Figure 4 shows the 
2-D collocation schemes• These collocation schemes are used in the computations of numerical 
examples in Section 5. 
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The following Nd+Nb~ equations are satisfied at internal domain nodes and Neumann boundary 

points: 

025~ 0~4i O~i ~ 0 ~  E O~tl 
L (ui) = A--~x~ + B o - ~ y  + C-~-y 2 + 13-~x + Oy + Fg i  = Hi, in f~ and on Fbt. (22a) 

The following Nb~ equations are satisfied on the Neumann boundary Fb~: 

n T • V~ti + qn = O, i = 1, 2 , . . . ,  Nb~. (22b) 

The following Nb2 equations are satisfied on the Dirichlet boundary Fb2: 

t2i - ~ = 0, i = 1, 2 , . . . ,  Nb2. (22c) 

fi~ are obtained by equation (6) or (20). 

equations. 
For radial point interpolation: 

Its derivatives can be obtained by the following 

o~(~) ~, -~-~ ~'~' 
~(x) = ~ ¢ ~ ; ,  o~ = ~ = 

j=~ j=~ j=l 

0~(x) _ ~ ~ e ~ ,  02~(x) ~_57y ~uj'°2¢j ô o2~(x) ~ 02¢~ ~e 
_ = 0--~y ~tj- Oy Oy 2 OxOy 

j=l j=l j=l 

(23a) 

For Hermite radial point interpolation: 

nb ^ e  
^ ~ X-"  ~/ ,g Ou j 

4(x) = ~k~k + Z_. ~J ~ n '  
k=l j=l  

0~ - ~ - b 7  u~ + ~ 0~ 0~' k=l j=l  

Oy2 -- -~y2 uk + E Oy2 On' 
k = l  j = l  

0~(x) _ ~ 0¢~e  ~ 0¢~ 0~  
Ox ~ k + ~ Ox On' 

k=l j=l 

0y k=l " ~ y  k -j- E 0y 0 n '  (23b) 
j=l  

ozoy = k=l o--;~y uk * ~= oxoy on" 

Thus, ~2i and its derivatives 
equation (23a) or (23b): 

~i=~(x~), 

O~i _ 0~(xi) 

in equation (22) can be obtained by substituting x into xi in 

Oy Oy 

0a__ A = 0~(xi) 02~i 02~(xi) 
Oce Ox ' Ox 2 

02fi~ 02~(xi) 02~i 
Oy 2 Oy 2 ' OxOy OxOy 

0X2 ' 
(24) 

0~(xi) 

5. N U M E R I C A L  T E S T S  

In this section, a series of test examples are numerically analysed. 1-D examples for wave 
propagation and boundary layer problems are first examined to test the accuracy and the h- 
convergence rates of the proposed RPICM. The second and third examples involves solving 2-D 
Polsson equations with only Dirichlet boundary conditions. The results are obtained and com- 
pared with Gaussian RPICM based on different additional terms, namely no additional terms, 
constant term and linear terms. Several different results are obtained by using Gaussian and 
thin plate spline (TPS) RPICM. Their h-convergence rates are also investigated. For Gaussian 
RPICM, its computed results with different shape parameters are demonstrated. Examples 4 
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and 5 will be employed to study how the accuracy of solution for PDEs with Neumann boundary 
conditions can be improved. The Hermite-type point interpolation applied to deal with Neumann 

boundary conditions has shown very good improvement on the accuracy of solutions. 
The error indicators used in Tables 1-12 and Figures 5-10 are defined as follows: 

i=1 = = = (25a) 
e = N ' e x  ~ N , e y  N 

eog 2 ) E ~- - i , yJ  
i=1 i=1 i=1 

The rates of h-convergence of the relative error, R(~), are also computed in some examples. I t  

is defined as follows: 
log Qh/Ui+a) (255) = 

where ~? = e, ex or %, while hi+l and hi are the uniform nodal interval in the current and 
previous case, respectively. 

5.1. 1-D 

EXAMPLE 1. WAVE PROPAGATION PROBLEM. A one-dimensional example of Poisson equation 
will be analyzed in order to investigate h-convergence for RPICM. The governing equation and 
boundary conditions are 

d2u 
dx ~ + )~u = 0, x • (0, 1) 

= 0 ,  ( 2 6 )  

u(1) = 1.0, 

where ~=10.0. 
The exact solution is: 

sin v ~ x  
= sinv  " ( 2 r )  

As a first example, the 1-D equation is solved using Gaussian RPICM and thin plate spline 

(TPS) RPICM. 

• G a u s s i a n  R P I C M  

Three different forms of additional terms, namely no additional terms, constant additional 
terms and linear additional terms, have been utilised to investigate its accuracy. 

Figure 5a shows the relative errors of function obtained by using Gaussian RPICM with dif- 
ferent shape parameter values under the assumption of three different additional terms imposed 
when uniform 41-node model and five-node collocation scheme were adopted. Generally, no ap- 
parent improvement was observed when additional polynomial terms were employed. However, 
for some certain shape parameter c, a small improvement of accuracy can be obtained after using 
additional polynomial terms. With shape parameter c =- 1.0, the L 2 relative error with no addi- 
tional term is 0.3%; the L 2 relative error with constant additional term is 0.125%; the L ~ relative 
error with linear additional term is 0.027%; From our calculated results, the relative errors of 
derivative is close to that  of the function. 

In this example, a uniform distribution of 21 (h = 0.05), 41 (h -- 0.025), and 81 (h = 0.0125), 
points were also employed to study the h-convergence behaviour of the method. Figure 5b shows 
its h-convergence solutions with function and its derivative with different additional terms for 
shape parameter c = 1.0 when three-node collocation scheme was used. I t  is clear that  no 
improvement was observed with different additional terms for convergence rates. However, the 
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lOO 

10 

t7 

0,1 

0.01 

1E-3 

- . ~ , - .  L2error of u 
wi~ no addition terms 

- - 0 - -  LZerror of u 
with constant addition terms 

- - ,~ - -  LZarror of u 
with linear addition terms 

A 

0.01 

0.01 

~ a n ' o r  of u 
with no addltkme] terms 

- - g , - -  a n o r  of u 
with constant  term 

+ e r r o r  o f u  
w~h linear terms 

- - ~ - -  error of u 
with no additional terms 

~ s r r o r  of u 
with constant term 

---O-- error of U K 
w l ~  linear terms 

0.1 . . . . . . . .  ; . . . . . . . .  '0  . . . . . . . . .  0:1 

c b 

(a) The errors for 41-node model (five-node collo- (b) The h-convergnce (three-node collocation 
cation scheme), scheme). 

Figure 5. The results obtained with Gaussian RPICM for Example 1. 

improvement of accuracy is apparent using additional terms. It should be noted that the test of 
the h-convergence failed for some shape parameters and collocation schemes. 

• T P S  R P I C M  

The three-order and four-order TPS RPICM with additional quadratic polynomial has been 
employed to solve the 1-D example. The results of h-convergence have been listed in Tables 1 
and 2 (for three-order TPS) and Tables 3 and 4 (for four-order TPS). From these results, it can 
be observed that good h-convergence rates have been obtained. In addition, the results show that 
the accuracy obtained by using four-order TPS RPICM with additional quadratic polynomial has 
further been improved. 

Table 1. h-convergence rates of u for Example 1 

Model Nodes ~ Collocation Scheme 

21 

41 

81 

Five-Node Scheme 

~(%) n 

7.622 

2.331 1.71 

0.615 1.92 

M = 3). 

Seven-Node Scheme 

~(%) R 

6.315 

1.669 1.92 

0.417 2.00 

Table 2. h-convergence rates of u= for Example 1 (M = 3). 

Model Nodes ~ Collocation Scheme 

21 

41 

81 

Five-Node Scheme 

~=(%) n 

7.553 

2.310 1.71 

0.609 1.92 

Seven-Node Scheme 

~=(%) n 

6.300 

1.655 1.93 

0.413 2.O0 

Table 3. h-convergence rates of u for Example 1 

Collocation Scheme 

Model Nodes ~ 

21 

41 

81 

Five-Node Scheme 

~(%) 

10.84 

1.457 

0.217 '" 

M = 4). 

Seven-Node Scheme 

R e(%) 

0.956 

2.90 0.389 

2.75 0.050 

m .  

R 

1.30 

2 .96  
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Table 4. h-convergence rates of u= for Example 1 (M = 4). 
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Model Nodes ~ Collocation Scheme 

21 

41 

81 

Five-Node Scheme 

e=(%) R 

10.67 

1.417 2.91 

0.207 2.78 

Seven-Node Scheme 

e~(%) a 

1.032 

0.398 1.38 

0.052 2.94 

5.2. 2 - D  E x a m p l e :  E l l i p t i c  P a r t i a l  D i f f e r e n t i a l  E q u a t i o n s  ( P D E s )  

EXAMPLE 2. POISSON EQUATION WITH UNIFORM DIRICHLET BOUNDARY CONDITION. 

V2u ----- sin(~rx) sin(Try), (x, y) e ~ = [0, 1] x [0, 1], (28a) 

u(x,  Y)[Oa = O. (285) 

The  exact  solution is given by 

1 
u~=(x, y) = - ~  sin(~x) s in ( ry ) .  (29) 

I0, 
.0.01 
-0.02 
-0.03 
-0.04 
-0.C5 

0 

1 1 

°°oL 
0.2 ~ ' 0 . 2  

(a) The exact for Example 2. (b) The exact for Example 3. 

Figure 6. The exaqct solutions for Example 2 and Example 3. 

10. 

1. 

0.1. 

0 . 0 1 ,  

1E-3, 

1E-4, 

1[=-5, 

1E-6 

--0-- L" error of u 
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Figure 7. The results obtained with Gussian RPICM for Example 2 (nine-node 
collocation scheme). 
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Table 5. The relative errors obtained with Gaussian RPICM (c ---- 1.0) for Example 2 
(121-node regular model, nine-node collocation scheme). 

No Additional Terms Constant Additional Terms Linear Additional Terms 

e(%) e~(%) e~(%) e(%) e~(%) e~(%) e(%) e=(%) e~(%) 

0.073 0.73 0.73 0.12 0.77 0.77 0.12 0.13 0.13 

• Gauss ian  R P I C M  

The exact solution in equation (29) is shown in F i g u r e  6a. F i g u r e  7a shows the relative (L 2) 

and absolute (L ~ )  errors of function and its derivatives with different shape parameter values 
when uniform 11 x 11 model and nine-node collocation scheme were adopted. From these results 
shown as Figure 7b, three apparent optimal solutions are observed at c -- 1.0, c = 3.0, and 
c = 10.0. 

The h-convergence of this method using a uniform distribution of 11 x 11 (h = 0.1), 21 x 21 

(h = 0.05), and 41 x 41 (h = 0.025) nodes is shown in Figure 7b when nine-node collocation 
scheme was used. Similar to the 1-D example, the convergence rates about function and its 
derivatives are almost the same. The results from using 11 x 11 un i fo rmly  distributed nodes 

model  and nine-node collocation scheme using different additional terms are listed in Table 5. 

F r o m  Tab le  5, the improvement of accuracy, especially for the derivatives, was apparent using 

linear additional terms. 
In order to investigate the suitability of this method for an irregular model, a 121-node scat- 

tered point model shown in Figure 8 is employed to solve this problem with different collocation 
schemes. These numerical results are listed in Table 6 for different collocation schemes and dif- 
ferent additional terms. From Table 6, it is clear that the computed solution is close to the 
exact solution as we increase the nodal numbers in a collocation support domain. However, no 
improvement of accuracy can be observed with different additional terms. 

EXAMPLE 3. POISSON EQUATION WITH NONUNIFORM DIRICHLET BOUNDARY CONDITION. 

V2u  ÷ u = (2 -}- 3x) e ~ -y ,  (x,  y) e gl = [0, 1] x [0, 1], 

u ( x , y ) l o ~  = (2 + 3x)e x-y. 

The exact solution is given by 
u ~ ( x ,  y) = z e  ~ -~  

(30a) 

(30b) 

(31) 

100, 

10, 

° •  0 . 1  

0.01 

1E-3 

1E4 . . . .  

0.01 

l • L ° error of u 
J O - -  L" error of u= 

.J- L" error of u v 
• L' error of u f j  

---c-- L = error of u x ~_.o~:~ == 

J.. \ ..,,,r..---" "J'" __fo~:~,' ," ~r 

. . . . . . . .  i . . . . . . . .  i . . . . . . . .  i , . 

0.1 I 10 

0 .1 .  

0.01. 

UJ  
l l e ~ .  

1E-4. 

A L°errorofu I 
• L" error of u= [ 
• L" error of uy [ 

"-A'-- L= error of u J 
" 0 - -  L= error of u= J 

L = error of uy I 

. . . .  0.01 . . . . . . .  011 

h 

(a) The errors with different shape parameters c. (b) The h-convergence, 
Figure 9. The results obtained with Gussian RPICM for Example 3 (nine-node 
collocation scheme). 
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Figure 8. Irregular model with 121 nodes. 

Table 6. The relative errors obtained with Gaussian RPICM (c = 1.0) for Example 2 
(121-node scattered points model). 

No Additional Terms Constant Additional Terms 

~ ~(%) ~x(%)  ~(%) 

1.0 5.73 19.73 42.84 

1.5 0.30 0.71 1.30 

2.0 0.035 0.093 0.08 

e(%) ~ x ( % )  ~(%) 

5.70 18.31 34.79 

0.285 3.45 1.55 

0.037 0.159 0.184 

Linear Additional Terms 

~(%) ~ x ( % )  ~(%) 

19.36 34.48 85.38 

0.32 3.30 1.40 

0.036 0.18 0.21 

• G a u s s i a n  R P I C M  

The exact solution in equation (31) is shown in Figure 6b. Figure 9a shows the relative (L 2) 

and absolute (L c¢) errors of function and its derivatives with different shape parameter  values 

when uniform 11 x 11 model and nine-node collocation scheme were adopted. From these results 

shown in Figure 9a, only an apparent optimal solution can be observed at c = 0.02, and this is 

not the same as tha t  obtained in the previous Example 2. 

The h-convergence of this method using a uniform distr ibut ion of 11 x 11 (h = 0.1), 21 x 21 

(h = 0.05) and 41 x 41 (h = 0.025) points is shown in Figure 9b when nine-node collocation 
scheme is used. 

In addition, this problem was solved using 11 x 11 uniformly distributed points model and 
nine-node collocation scheme using different additional terms. These results are listed in Table 7. 
Prom Table 7, the improvement of accuracy, especially for the derivatives, is apparent using linear 
additional terms. This conclusion is similar to Example 2. 

In order to investigate the suitability of this method for an irregular model, a 121-node scattered 
point model shown in Figure 8 was employed to solve this problem with different collocation 
schemes. These numerical results are listed in Table 8 for different collocation schemes and 
different additional terms. The same conclusions as in Example 2 can be obtained. 

EXAMPLE 4. POISSON EQUATION WITH NEUMANN BOUNDARY CONDITION. 

•2u + u = (2 + 3x) e ~:-y, (x, y) e f~ = [0, 11 x [0, 11 . (32a) 

Table 7. The relative errors obtained with Gaussian RPICM (c = 1.0) for Example 3 
(121-node regular model, nine-node collocation scheme). 

No Additional Terms Constant Additional Terms Linear Additional Terms 

e(~) e~(%) ey(~) e(~) e~(~) e~(%) e(%) e~(%) e~(~) 

0.31 1.32 1.31 0.16 1.33 1.17 0.16 0.24 0.72 
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Table 8. T he  relative errors obtained with Gauss ian PICM (c = 1.0) for Example  3 
(121-node scat tered points  model). 

No Addit ional  Terms  Cons tan t  Addit ional  Terms Linear Addit ional  Terms 

1.0 0.43 2.45 6.52 

1.5 0.15 0.46 1.01 

2.0 0.016 0.041 0.15 

0.27 3.83 7.92 

0.21 1.15 1.83 

0.011 0.144 0.268 

,(%) e~(%) ev(%) 
0.46 3.53 10.15 

0.036 0.56 0.77 

0.0088 0.086 0.22 

BOUNDARY CONDIT ION I. 

= - -  = e - Y ,  u(x,y)iy=o = xe~, u(x,y)lu=l xeX-1, Ox ~=o O-~x x=l=2el-V. (32b) 

BOUNDARY CONDITION II .  

u(x, v) l =0 = 0, u(x, Y)[y=o = xe~, OxO--u-u z = l = ( l + x ) e l _ Y  ' 

The exact solution is given by 

O_~_Uoy y----1 = --xex--l" 

(32c) 

u  (x,u)=xe (33) 

• G a u s s i a n  R P I C M  (c = 1.0) 

The exact solution in equation (33) is shown in Figure 6b. This problem was solved using 11 x 11 
uniformly distributed points model and nine-node collocation scheme. The results obtained with 
two different interpolation scheme, namely directed collocation (DC) and Hermite interpolation 
collocation (HC), are listed in Table 9. From these results in Table 9, it is clear that HC schemes 
have greatly improved accuracy when there exist Neumann boundary conditions. The relative 
errors of function with DC and HC schemes are 8.47% and 3.30% respectively when Boundary 
Condition I was employed. The relative errors of function with DC and HC schemes are 20.08% 
and 0.30%, respectively, when Boundary Condition II was employed. A similar improvement of 
accuracy for derivatives can also be observed from Table 9. In addition, this problem was also 
solved using the 121-node scattered point model shown in Figure 8 to investigate the suitability 
of this method for an irregular model. These numerical results obtained with irregular model and 
different collocation schemes are listed in Table 10. These results show the efficiency of solving 
this problem using HC scheme even for the random scattered point model. The computed solution 
is close to the exact solution as we increase the nodal numbers in the collocation support domain 
for both DC scheme and HC scheme. The relative errors of function obtained with DC scheme 
are 14.98%, 3.15%, and 0.25%, respectively, when the sizes of support domain were chosen to be 
1.0, 1.5, and 2.0. The relative errors of function obtained with HC scheme are 2.34%, 0.10%, 
and 0.03% respectively when the sizes of support domain were chosen to be 1.0, 1.5, and 2.0. A 
similar improvement of accuracy for derivatives can be observed from Table 10. 

Table 9. T he  relative errors obtained with Gauss ian  RPICM (c = 1.0) for Example  4 
(121-node regular model, nine-node collocation scheme). 

Boundary  Condit ion I Boundary  Condi t ion II 

e(%) e~(%) ~(%) ~(%) ~x(%) e~(%) 

DC 8.47 8.53 36.92 DC 20.08 16.10 40.32 

HC 3.30 2.77 9.65 HC 0.30 1.63 6.40 
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Table 10. The relative errors obtained with Gaussian RPICM (c = 1.0) for Example 4 
(121-node scattered points model Boundary Condition II). 

Directed Collocation Hermite Collocation 

~ e(%) ~=(%)  e~(%) 

1.0 14.98 11.77 28.80 

1.5 3.15 3.03 10.30 

2.0 0.25 0.23 0.63 

a~ e(%) e=(%) ~(%) 

1.0 2.34 3.31 13.57 

1.5 0.10 0.50 1.14 

2.0 0.03 0.14 0.20 

1439 

EXAMPLE 5. T H E  PARTIAL DIFFERENTIAL EQUATIONS WITH IRREGULAR SOLUTION DOMAIN. 

V. (DVu) - v .  V u  = f ( x , y ) ,  ( x , y )  E ~ ,  

Ilo 0 ] [1,(1 + y)2 ] D = (1 + y2) , v = 

DIRICHLET BOUNDARY CONDmONS. 

(34a) 

(34b) 

~]DB ~ el+Y' (35a) 

NEUMANN BOUNDARY CONDITIONS. 

~nn NB1---- ~'~-n (eZ+Y + (X2--X)21og(I + y2))INBI " 
NB2 NB2 NB3 NB3 

The exact Solution is given by 

~ x  = ex+y + (x2 _ x)2 log(1 + y=). 

(35b) 

(36) 

• G a u s s i a n  R P I C M  (c = 6.0) 

This is a problem with irregular solution domain shown in Figure 10a. It  is solved using 
81-node nonuniformly distributed point models shown in Figure 10b. The numerical results 
obtained with the nonuniform model and different collocation schemes are listed in Table 11. 
These results show the efficiency of solving this problem using HC scheme even for non-uniform 
models. The computed solution is closer to the exact solution as we increase the nodal numbers 
in the collocation support domain for both DC scheme and HC scheme. The relative errors of 

1.1 

0.4 

1.1 

__ J ~  NB:Neumann Boundary_I_ 
1.2 

L I 

(a) (b) 

Figure 10. Irregular solution domain for Example 5 and its 81-node discrete model. 
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Table 11. The relative errors obtained with Gaussian RPICM (c = 6.0) for Example 5 
(81-node model, mixed boundary condition). 

Directed Collocation Hermite Collocation 

~ ~(%) e ~ ( % )  %(%) 

1.5 129.90 203.18 148.31 

2.0 38.37 61.32 58.12 

2.5 24.23 33.85 119.26 

1.5 14.58 73.93 41.69 

2.0 6.14 12.36 15.68 

2.5 3.81 11.89 7.17 

function obtained with DC scheme are 129.90%, 38.37%, and 24.23%, respectively, when the sizes 
of support domain were chosen to be 1.5, 2.0, and 2.5. The relative errors of function obtained 
with HC scheme are 14.58%, 6.14%, and 3.81%, respectively, when the sizes of support domain 
were chosen to be 1.5, 2.0, and 2.5. The similar improvement of accuracy for derivatives can be 
observed from Table 11. 

• TPS R P I C M  

TPS RPICM with different additional terms was applied to solve this problem. I t  is different 
from the Gaussian RPICM because it does not have the problem of an adjustable parameter. In 
order to avoid the singularity at r = 0 appearing from derivatives in our methods, at least a thin 
plate spline function of the order M -- 2 should be adopted. 

Table 12. The relative errors obtained with thin plate spline RPICM for Example 5 
(81-node model, mixed boundary condition). 

Directed Collocation Hermite Collocation 

M = 4: Two-Order Thin Plate Spline with Constant  Additional Terms 

a~ e(%) ex(%) ey(%) 

1.5 6.70 21.90 38.16 

2.0 59.78 77.26 111.16 

2.5 15.04 58.54 > 200.00 

~s e(%) e~(%) ey(%) 

1.5 > 100.00 > 200.00 > 200.00 

2.0 5.67 50.36 13.39 

2.5 5.61 13.07 5.41 

M = 6: Three-Order Thin Plate Spline with Constant Additional Terms 

1.5 88.79 Too bad Too bad 

2.0 > 100.00 > 300.00 > 400.00 

2.5 47.75 > 200.0 100.42 

~ e(%) ex(%) e~(%) 

1.5 23.66 59.74 85.23 

2.0 7.55 37.89 35.17 

2.5 7.80 39.37 20.04 

M = 4: Two-Order Thin Plate Spllne with Linear Additional Terms 

,~ e(%) ex(%) e~(%) 

1.5 7.30 8.72 12.81 

2.0 79.44 132.52 > 200.00 

2.5 17.17 80.62 > 300.00 

as e(%) e~(%) e~(%) 

1.5 19.71 22.55 13.12 

2.0 22.36 64.13 22.49 

2.5 12.63 19.80 35.42 

M = 6: Three-Order Thin Plate Spline with Linear Additional Terms 

1.5 14.94 29.34 38.96 

2.0 2.16 > I00.00 12.66 

2.5 0.88 9.46 5.58 

1.5 1.29 6.76 3.76 

2.0 1.91 3.52 3.66 

2.5 1.52 2.84 2.47 
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Table 12 shows the relative errors of function and its derivatives for both DC scheme and 
HC scheme when 81-node model in which 23 are Neumann boundary points, nine are Dirichlet 
boundary points and the remaining 49 internal points (see Figure 10b) was used. From these 
results in Table 12, the relative errors obtained using TPS function without the additional terms 
are very high, and it shows that TPS function without the additional polynomial terms can not 
be adopted. However, the accuracy was greatly improved when using TPS function with linear 
polynomial term. The results in Table 12 show that relative errors of function with HC scheme 
are 1.29% when the size of support domain was chosen to be 1.5 and three-order TPS was used. 
In addition, these results still show that the higher order additional polynomial term must be 
added when high-order TPS was employed during the solution. 

6. C O N C L U S I O N S  

A point interpolation collocation method (PICM) based on radial basis is presented in this 
paper. In contrast to Galerkin-based approaches, the biggest advantage of this present method 
is its simplicity and its efficiency. Compared to radial basis function (RBF), its interpolation 
is implemented in a local support domain so that a banded system matrix will be acquired. In 
addition, the present method is the same as other point collocation methods: its implementation 
is straightforward, once the required derivatives are computed. Of course, the implementation of 
essential boundary conditions is straightforward in RPICM. This feature makes the RPICM truly 
meshfree and points can be sprinkled randomly for numerical analysis. A series of test examples 
were numerically analysed and some useful results have been obtained. An excellent scheme 
namely the Hermite-type interpolation was applied to greatly improve the accuracy when there 
exists Neumann boundary conditions. No major improvement on the accuracy of the results was 
observed when the additional polynomial terms were used for Gaussian radial basis. However 
an apparent improvement of accuracy can be obtained when the additional polynomial term was 
employed for high order TPS. 
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